

Forschungsergebnisse zu blau-grün-grauen Infrastrukturen in einem Berliner Modellquartier:

Pflege/Betrieb und Resilienz

Michel Gunkel, Berliner Wasserbetriebe

Andreas Matzinger & Paul Schütz, Kompetenzzentrum Wasser Berlin



GEFÖRDERT VOM

Vorgehen der Untersuchung

N4-Machbarkeitsstudien in Fokusgebieten

Definition von Ausfallszenarien verschiedener Maßnahmen anhand Betriebserfahrung

Simulation von Ausfallszenarien verschiedener Maßnahmen und Bewertung der Resilienz

Wassersensibler Gestaltungsentwurf des Gesamtgebietes

Modellierung mit Kombination InfoWorks-SWMM

Entwicklungsprozess im Bezirksamt Pankow

- Detailplanung Fokusgebiete
- Bebauungsplan Neubau
- RW-Konzepte Freiraum
- Planung Straßenraum

Definition von Szenarien

- Status Quo
- Nachverdichtung Neubau
- Gebietsentwicklung mit RW-Konzepten

Simulation und Bewertung der Wirkung

- aus Sicht des Kanalnetzes
- Ziel: Gewässerschutz
- · Ziel: Wasserhaushalt

BWB-Betriebserfahrungen mit dez. RW-Anlagen

- BWB sind im Auftrag des Landes Berlin (SenUVK) zuständig für die Regenentwässerung öffentlicher Straßen und Plätze
- → bei dez. RW-Bewirtschaftung erfolgen Betrieb und Pflege durch die BWB oder Auftragnehmern

Maßnahme	Vorkommen	Pflegebedarf	Störungen
Mulden	Straße (viele)	Pflegeplan 2-6x jährlich	 Zufluss wächst zu Teilweise durch Starkregen, Topografie,
Rigolen	Straße (viele)	kein	Keine bzw. nicht bekannt

BWB-Betriebserfahrungen mit dez. RW-Anlagen

- auf BWB Liegenschaften bestehen weitere RW-Infrastrukturen
- → Betrieb und Pflege der Anlagen erfolgt durch die BWB oder Auftragnehmern

Maßnahme	Vorkommen	Pflegebedarf	Störungen
Teilversiegelte Flächen	BWB-Grundstücke	Hofpflege	 Gegebenenfalls eingeschränkte Versickerung, aber nicht bekannt
Grünflächen	BWB-Grundstücke	Hofpflege	Keine bzw. durch Pflege kompensiert
Gründächer	BWB-Gebäude	Kontrolle, jährlich	kaum; Bewuchs wird beseitigt

Übersetzung in Ausfallszenarien

Ausfälle

Erosion

Präferentielle Fließwege

"Verschlammung"

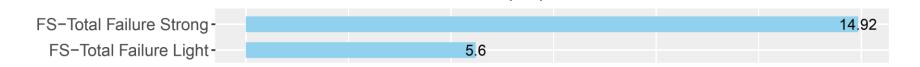
Pumpenausfall

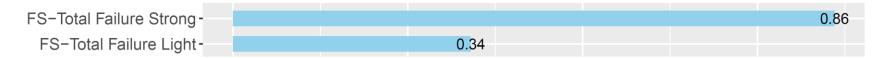
Kolmation

Sedimentation

Szenarien

"light" = unregelmäßige Pflege ca. alle 2 Jahre


"strong" = Vernachlässigung für 10 Jahre


Wirkung der Ausfälle

Abfluss Stadtumbaugebiet, Veränderung in %

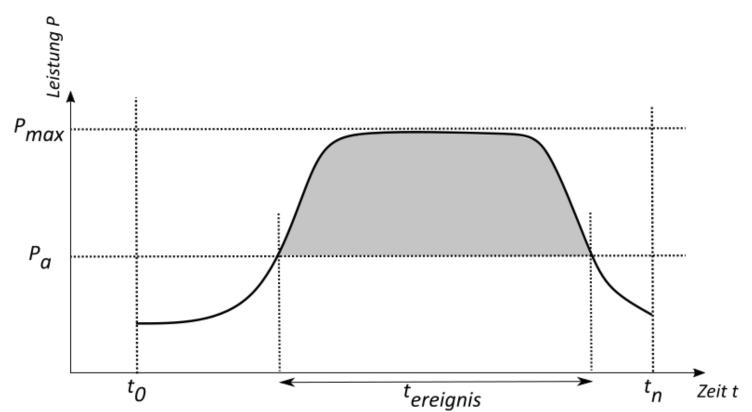
Mischwasserüberlaufsvolumen, Veränderung in %

Quelle: Masterarbeit, P. Schütz

Resilienz?

- 4 Punkte, um Resilienz zu definieren (Juan-Garcia et al. 2017):
- die <u>Eigenschaften</u> ("properties") des Systems
 Entwässerungssystem Bln XI: Status Quo, Verdichtung, Wasserkonzept
- 2. die <u>Störung</u> ("stressor") gegenüber der das System resilient sein soll Starkregen, Ausfälle von Maßnahmen
- 3. die angestrebte <u>Leistung</u> ("performance") des Systems Entwässerung ohne Mischwasserüberläufe
- 4. eine <u>Bewertungsmethode</u> ("metrics"), um die Leistung zu messen.

Bewertung der simulierten Abflussspitzen und des simulierten Mischwasserüberlaufsvolumen


Resilienz-Messung

Schwere des Leistungsausfalls ("severity") Sev:

$$Sev = \frac{1}{P_a - P_{max}} \times \frac{1}{t_n - t_0} \times \int_{t_0}^{t_n} P_a - P(t) dt$$

$$Res_0 = 1 - Sev$$

Resilienzwirkung des Wasserkonzeptes

Stadtumbaugebiet	Verdichtung ohne Wasserkonzept	Verdichtung mit Wasserkonzept	Veränderung
Ereignisse > 10 L/s/ha	20	0	-100 %
Schwere/severity [-]	0,04	0	-100 %
Resilienzindex [-]	0,96	1	+5 %

Gesamt- einzugsgebiet	Verdichtung ohne Wasserkonzept	Verdichtung mit Wasserkonzept	Veränderung
Jahresvolumen Mischwasser- überläufe	563.301	430.562	24 %
Schwere/severity [-]	0,04	0,03	-24 %
Resilienzindex [-]	0,96	0,97	+1 %

Quelle: Masterarbeit, P. Schütz

Resilienzwirkung der Maßnahmenausfälle

Stadtumbaugebiet	Verdichtung ohne Wasserkonzept	Verdichtung mit Wasserkonzept	Veränderung
Ereignisse > 10 L/s/ha	20	0	-100 %
Schwere/severity [-]	0,04	0	-100 %
Resilienzindex [-]	0,96	1	+5 %

keine Verschlechterung!

Gesamt- einzugsgebiet	Verdichtung ohne Wasserkonzept	Verdichtung mit Wasserkonzept	Veränderung
Jahresvolumen Mischwasser- überläufe	563.301	430.562 maximal+ 3720 m	24 % 3
Schwere/severity [-]	0,04	0,03	-24 %
Resilienzindex [-]	0,96	0,97	+1 %

Quelle: Masterarbeit, P. Schütz

maximal 1 % (Sev), 0,025 % (Res) ₁₀

Zusammenfassung

- Pflege ist wichtig für die Funktionalität der betrachteten Maßnahmen
- Allerdings funktionieren die Maßnahmen aus wasserwirtschaftlicher Sicht auch bei mangelnder Pflege erstaunlich gut
- Dies lässt sich auch durch eine Resilienzmessung belegen: die untersuchten Wasserkonzepte (die knapp 20% der bebauten Fläche umfassen) können die Resilienz erhöhen, bzw. die Vulnerabilität des Gesamtgebietes um ca. ¼ reduzieren, Maßnahmenausfälle erhöhen diese dagegen lediglich im 1 %-Bereich

Resilient networks: Beiträge von städtischen Versorgungssystemen zur Klimagerechtigkeit (netWORKS 4)

Projektpartner ISOE – Institut für sozial-ökologische Forschung

Deutsches Institut für Urbanistik (Difu) KWB Kompetenzzentrum Wasser Berlin

Berliner Wasserbetriebe (BWB)

Ramboll Studio Dreiseitl

Städtepartner Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz, Berlin

Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen, Berlin

Stadt Norderstedt Die Oberbürgermeisterin

Laufzeit 07/2020–03/2022

Förderung Bundesministerium für Bildung und Forschung (BMBF), Fördermaßnahme

"Transformation urbaner Räume" des Förderschwerpunkts "Sozial-ökologische

Forschung"

Website www.networks-group.de

Bauen und Wohner

GEFÖRDERT VOM

